
Distribution Category:Mathematics andComputer Science (UC-405)ARGONNE NATIONAL LABORATORY9700 South Cass AvenueArgonne, IL 60439ANL-94/40Extensible PDE Solvers PackageUsers ManualbyBarry SmithMathematics and Computer Science Division
September 1994This work was supported in part by the O�ce of Scienti�c Com-puting, U.S. Department of Energy, and by ARO under subcon-tract number ORA 4466.04 Amendment 1 from The University ofTennessee, Knoxville, while the author was at the Department ofMathematics, University of California at Los Angeles.

ContentsAbstract iii1 Introduction 11.1 Accessing the Guts : 31.2 Why C? : 31.3 Further Information : 31.4 Installing the Package : 31.5 Error Messages : 42 Working with Grids 52.1 Tensor Product Grids : 52.2 Unstructured Grids : 82.2.1 Grids Based on Triangles : 82.2.2 Grids Based on Quadrilaterals : 92.2.3 Grids Based on Tetrahedrons : 92.2.4 Grids Based on Hexahedrons (Bricks) : 102.2.5 Adding a Mapping : 102.3 Operations on Grids : 112.3.1 Re�ning Grids : 112.3.2 Grid Coarsening : 112.3.3 Saving and Loading Grids : 122.3.4 Graphics : 122.3.5 Partitioning Grids : 132.4 Manipulating Points : 142.5 Manipulating Mathematical Functions : 152.6 Adding New Types of Grids : 163 Working with PDEs and Discretizations 173.1 De�ning the PDE : 173.2 De�ning Boundary Conditions : 183.3 Using a Discretization : 193.4 Discretizing the Boundary : 194 Solving a PDE 204.1 Classical Solvers : 214.2 Multigrid Solvers : 22i

5 Organization 235.1 Examples : 235.2 Directories : 256 Future Possibilities 267 Summary of Routines 27Bibliography 35Function Index 36

ii

Extensible PDE Solvers PackageUsers ManualbyBarry SmithAbstractThis manual describes the design and use of the Extensible PDE Solvers package for thesolution of elliptic PDEs.At this time, the package provides support for the solution of elliptic PDEs using either �niteelements or �nite di�erences in two or three dimensions on either structured or unstructuredgrids. The package is designed to be easily extended to new discretizations or classes of PDEs.Several classical direct and iterative methods, as well as several multigrid variants, may be usedto solve the resulting linear systems.The package is intended as a prototype, working implementation to demonstrate, and learn,how such packages may be organized. Many important features for particular problems arelacking; future versions of the package may add increased functionality. The software describedis purely experimental; its structure and organization may change signi�cantly at any time.There is no explicit support for parallel computing in the Extensible PDE Solvers package.

iii

Chapter 1IntroductionWouldn't it be nice to be able to write a 25-line code that could e�ciently set up and solve a classof PDEs on an arbitrary geometry (see Fig. 1.1)? The Extensible PDE Solvers package is a �rstattempt at providing such a programming environment.main(int Argc, char **Args){/* define the variables */DDGrid *grid;DDPDEDiscretization *disc;DDFunction *f, *g;DDDFunction *u;DDPDE *pde;DDBC *bc;DDBCDiscretization *bcdisc;DDOneGrid *onegrid;DDDomain *domain;/* define the grid */grid = DDGridLoad(``structure.grid'');/* define the PDE */f = DDFunctionCreate(2,2,rhs1,rhs2,&ectx);pde = DDPDECreateIsoLinearElasticity2(f,1.,.3,0,0);/* define the discretization */disc = DDPDEDiscretizationCreate(DDPDEDISCFE2dLIN);DDPDEDiscretizationSetUp(disc);/* define the Dirichlet boundary conditions */g = DDFunctionCreate(2,2,dir1,dir2,0);bc = DDBCCreateDirichlet(g,0,0);/* define the discretization of boundary conditions */bcdisc = DDBCDiscretizationCreateSimple();/* setup and solve discrete system */domain = DDDomainCreate(grid,disc,pde);DDDomainAddBoundary(domain,bc,bcdisc);onegrid = DDOneGridCreateWithCommandLine(domain,&Argc,Args);DDOneGridSetUpWithCommandLine(onegrid,&Argc,Args);u = DDOneGridSolve(onegrid);} Figure 1.1: Example from the extensible PDE solvers package1

The Extensible PDE Solvers package provides a powerful, yet easy-to-use, interface to numericalmethods for elliptic PDEs. In addition, it is relatively easy to extend the set of methods.The present features of the Extensible PDE Solvers package include� a high-level, abstract interface to fundamental objects such as grids, discretizations, andboundary conditions;� identical support for structured, semistructured, and unstructured grids;� code reuse between �nite element and �nite di�erence discretizations; and� the ability to extend the code to new discretizations, PDEs, and linear system solvers withoutmodifying a single line of the Extensible PDE Solvers package.
Grid

MapVector

Points PDE BC PDEDisc

Matrix

BCDisc

Function Fe Fd

PDE Solvers

DOperatorDFunctionSolvers

Linear and Nonlinear

Domain

Figure 1.2: Outline of fundamental objectsThe goals of the Extensible PDE Solvers package (and, more generally, for all of the Portable,Extensible Toolkit for Scienti�c computation (PETSc) [3], developed by Gropp, McInnes, andSmith) are�
exibility,� reusability,� good e�ciency for both model and \real-world" problems, and� the ability to allow a programmer to set up and solve a problem quickly.To achieve these goals, the Extensible PDE Solvers package was designed using the concept ofdata encapsulation. Simply put, only routines that absolutely must know the data storage formatof an object are allowed to directly manipulate that data. All other routines can access the dataonly by calling these special (data access) routines. Di�erent software components communicatewith each other through a small, well-de�ned set of interfaces. (In our current implementation, thisconcept is occasionally violated in the interest of getting things done quickly.) See Figure 1.2 foran overview of some of the components in the Extensible PDE Solvers package.2

1.1 Accessing the GutsDespite the apparent power and
exibility of the Extensible PDE Solvers package, this packageactually provides a simpli�ed interface to the more
exible and powerful routines that are part ofthe PETSc package.The Extensible PDE Solvers package is designed to sit on top of these more powerful, but morecomplicated, routines and make it easier for you to solve PDEs without having to spend a largeamount of time coding. You do not need to know about or understand the lower-level routines inorder to use the package e�ciently. If you �nd that the Extensible PDE Solvers package does notgive you the functionality that you need, you should then (and only then) investigate these otherparts of PETSc.1.2 Why C?The Extensible PDE Solvers package (and most of PETSc) is coded in C. It is intended to beusable from Fortran 77 and (in the future) C++, but C is used as the basic library language forthe following reasons:� maturity of language and compilers,� ability to use data encapsulation techniques,� portability across virtually all machines, and� ability to be called easily from either Fortran 77 or C++.The Fortran 77 interface to the Extensible PDE Solvers package has not been extensively tested.We do not recommend using Fortran 77 with the Extensible PDE Solvers package. The Fortran 77interface for the rest of PETSc is, however, well tested and used by many people.1.3 Further InformationThis manual mentions some of the routines in the Extensible PDE Solvers package; however, usageinstructions are provided only for the more common routines. More detailed information about theroutines mentioned in this manual may be found in Chapter 7 and the man pages using toolman,one of the utilities provided by PETSc for accessing the detailed documentation on the routines.This package is growing through the addition of new routines. Suggestions (and bug reports)should be e-mailed to bsmith@mcs.anl.gov.The Extensible PDE Solvers package includes some graphical aids for displaying, for example,the progress of the solution algorithm. It is possible to install the Extensible PDE Solvers packagewithout the X-Windows graphics, but we do not recommend it.1.4 Installing the PackageThe Extensible PDE Solvers Package is available, as part of PETSc, by anonymous ftp frominfo.mcs.anl.gov in the directory pub/pdetools. The readme �le indicates which compressed tar�les you should obtain. Once the tar �le has been extracted at your site, the readme �le containsinstructions on the compiling and installation of the software.3

To make the examples for the Extensible PDE Solvers package, change to the directory do-main/tools, and type make BOPT=g ex1. This will make the �rst example. See Chapter 5, whereall of the examples are discussed.1.5 Error MessagesThe debugging version of the PETSc package will generate error tracebacks of the formLine linenumber in �lename: messageLine linenumber in �lename: message...Line linenumber in �lename: messageif an error is detected. The �rst line indicates the �le where the error was detected; the subsequentlines give a traceback of the routines that were calling the routine that detected the error. Amessage may or may not be present; if present, it gives more details about the cause of the error.The production libraries are often built without the ability to generate these tracebacks (or evendetect many errors). If your programs crash unexpectedly, try to compile the debugging versionand run that.

4

Chapter 2Working with GridsThe Extensible PDE Solvers package has support for many types of grids. Implementations areprovided both for tensor product grids with an optional mapping and for the usual unstructuredgrids.All of the grids are organized around a variable type called a DDGrid. These grids can be created,used for various purposes, and then destroyed. For instance, the following example displays a gridon your monitor.DDGrid *grid;grid = DDGrid2dCreateUniform(nx,ny,0.0,1.0,0.0,1.0);DDGridDraw(window,0,grid,0);DDGridDestroy(grid);The basic, prede�ned grid operations are as follows:� re�ne the grid,� coarsen the grid,� draw the grid,� draw the boundary of the grid,� partition the grid,� copy the grid,� determine whether points are in the grid,� determine whether points are on the boundary of the grid,� save the grid to a �le, and� read the grid from a �le.2.1 Tensor Product GridsThe simplest grids are tensor product grids in two or three dimensions. They may either beuniformly spaced grids or have nonuniform spacing between grid points. To create a uniformlyspaced grid, use the command 5

grid = DDGrid2dCreateUniform(nx,ny,xmin,xmax,ymin,ymax);or grid = DDGrid3dCreateUniform(nx,ny,nz,xmin,xmax,ymin,ymax,zmin,zmax);The arguments nx,ny,nz indicate the number of grids points, including the endpoints, whilexmin,xmax, etc. indicate the extreme corners of the grid.
Figure 2.1: Tensor product gridNonuniformly spaced tensor product grids (see Figure 2.1) are created with either the commandgrid = DDGrid2dCreateTensor(nx,ny,x,y);or, in three dimensions,grid = DDGrid3dCreateTensor(nx,ny,nz,x,y,z);The arguments x,y, and z are double precision arrays containing the locations of the grid pointsalong the various axes.Adding a Mapping

Figure 2.2: Mapped tensor product gridYou may associate with a uniform or tensor product grid a mapping to de�ne regions that are notrectangular but merely logically rectangular (see Figure 2.2). This is done in two steps: �rst, de�nethe mapping function, then, associate that mapping function with the grid.6

To de�ne a mapping function, you must provide two C routines that evaluate the mathematicalfunction at a point and at a set of points (see below for the de�nition of points). For instance,void MapPointAffine2d(inpoint,outpoint,p)DDPoint *inpoint, *outpoint;void *p;{ outpoint->x = 3.0*inpoint->x + 2.0*inpoint->y + 0.0;outpoint->y = 2.0*inpoint->x + 1.0*inpoint->y + 0.5;}is the code for a C function that evaluates the function xoutyout ! = 3:0 2:02:0 1:0 ! xinyin !+ 0:0:5 ! :A corresponding C routine for a set of points is given byvoid MapMeshAffine2d(mesh,points,p)DDMesh *mesh;DDPoints *points;void *p;{ int nx = mesh->nx, ny = mesh->ny, i, j, ii;double *xout = points->x, *yout = points->y;double c, d, *x = mesh->x, *y = mesh->y;for (i=0; i<ny; i++) {c = 2.0*y[i]; d = y[i] + .5;ii = i*nx;for (j=0; j<nx; j++) {xout[ii+j] = c; yout[ii+j] = d;}}for (i=0; i<nx; i++) {c = 3.0*x[i]; d = 2.0*x[i];for (j=0; j<ny; j++) {xout[i+j*nx] += c; yout[i+j*nx] += d;}}}Once the two C functions have been written, a map is de�ned byDDMap *map;map = DDMap2dCreate(MapPointAffine2d,MapMeshAffine2d,(void *)0);The �nal argument to DDMap2dCreate() is an optional function context, it contains a pointer toany additional data needed by the C routines. This is always passed to the C routines through the�nal void *p argument (this is unused in the above example.) We give an example of its use inSection 2.5.Now that a map has been created, it is added to a grid using the commandDDGridAddMap(grid,map); 7

2.2 Unstructured GridsThe Extensible PDE Solvers package also has support for the common unstructured grids.2.2.1 Grids Based on TrianglesPerhaps the simplest unstructured grid in two dimensions is based on triangles. These may becreated in several ways. The easiest is by converting from a uniform, tensor product or mappedgrid (or quadrilateral grid that are introduced below) using the commandDDGridToTriangles(grid);The second way to generate unstructured grids based on triangles is from a list of nodes andtriangles, using the commandgrid = DDGridCreateTriangles(nv,x,y,nt,nodes,nb,bnd);The �rst argument, nv, is the total number of vertices. The number of triangles is given by nt.The coordinates of the nodes are stored in the double precision arrays x and y. The integer arraynodes of dimension 3*nt contains the indices of the vertices of each triangle. The indices start at0, not 1.In addition, it is convenient to keep information about the boundary of the grid. This is doneby providing a list of line segments that de�ne the boundary. The integer nb is two times thenumber of line segments on the boundary, while the integer array bnd contains the vertices of thenodes that de�ne these line segments. For each line segment the interior of the domain must be tothe left of the line segment.In a simple example consider the unit square divided into two triangles. The input informationfor DDGridCreateTriangles could be given bynv = 4;x[0] = 0.0; y[0] = 0.0; x[1] = 1.0; y[1] = 0.0;x[2] = 0.0; y[2] = 1.0; x[3] = 1.0; y[3] = 1.0;nt = 2;nodes[0] = 0; nodes[1] = 1; nodes[2] = 2;nodes[3] = 3; nodes[4] = 2; nodes[5] = 1;bn = 4;bnd[0] = 0; bnd[1] = 1; bnd[2] = 1; bnd[3] = 3;bnd[4] = 3; bnd[5] = 2; bnd[6] = 2; bnd[7] = 0;The third technique for creating triangular grids in the Extensible PDE Solvers package is byproviding boundary information (and optional interior vertex information) and having the softwareautomatically generate the triangulation. This triangulation is generated using software providedby Timothy Baker of Princeton University (the code is in domain/grid/bapet.f). To generate thegrid use the commandgrid = DDTriangulateBaker(x,y,bnd,nb,ni,nbnd);The integers nb and ni contain the number of vertices on the boundary and in the interior. Thedouble precision arrays x and y contain the locations of the vertices with those on the boundarylisted �rst. The integer nbnd contains the number of line segments that de�ne the boundary, whilebnd is an integer array containing the indices of the end points of the line segments. For each linesegment the interior of the domain must be to the left of the line segment.8

It is also possible to input the boundary information (and optional interior points) using X-Windows graphics and the mouse. This is done with the commandsgrid = DDGridInputTriangularGrid(win);The argument win is the name of an X-Window. These windows are introduced below.2.2.2 Grids Based on QuadrilateralsIn addition to grids based on triangles, the other standard unstructured grid in two dimensionsprovided with the Extensible PDE Solvers package is a collection of quadrilaterals. The easiestway to create such a grid is by converting from a uniform, tensor product or mapped grid usingthe commandDDGridToQuadrilaterals(grid);The second way to generate unstructured grids based on quadrilaterals is from a list of nodesand quadrilaterals using the commandgrid = DDGridCreateQuadrilaterals(nv,x,y,nq,nodes,nb,bnd);The �rst argument, nv, is the total number of vertices. The number of elements is given by nq. Thecoordinates of the nodes are stored in the double precision arrays x and y. The integer array nodesof dimension 4*nq contains the indices of the vertices of each element. The boundary informationis passed in using the same format as that for triangle-based grids.2.2.3 Grids Based on TetrahedronsOne way to construct an unstructured mesh in three dimensions is using tetrahedrons. A tetrahedralgrid can be generated in one of two ways: from a uniform, tensor product or mapped grid (or froma hexahedral grid introduced below) or from a list of tetrahedrons. To generate a tetrahedral gridfrom a uniform, tensor product or mapped grid (or grid of hexahedrons), use the command,DDGridToTetrahedrals(grid);To generate a tetrahedral grid from a list, use the commandgrid = DDGridCreateTetrahedrals(nv,x,y,z,nt,vert,bn,bound);The arguments nv and nt contain the number of grid vertices and tetrahedrons, respectively Thedouble precision arrays x,y, and z contain the locations of the vertices, while vert is an integerarray of dimension 4*nt that contains the node numbers of the vertices of the tetrahedrons. Thenodes are ordered in the following way: �rst the front lower left, then the front lower right, then thetop node followed by the node in the back. The integer bn contains the number of triangles thatde�ne the boundary, and bound is an integer array of size 3*bn containing the indices of the verticesof the boundary triangles. Using the right-hand rule, the normals to the boundary triangles pointout of the domain. 9

2.2.4 Grids Based on Hexahedrons (Bricks)Another way to construct an unstructured mesh in three dimensions is by using hexahedrons. Ahexahedral grid can be generated in one of two ways: from a uniform, tensor product or mappedgrid or from a list of hexahedrons. To generate a hexahedral grid from a uniform, tensor productor mapped grid, use the commandDDGridToHexahedrals(grid);To generate a hexahedral grid from a list, use the command,grid = DDGridCreateHexahedrals(nv,x,y,z,nt,vert,bn,bound);The arguments nv and nt contain the number of grid vertices and hexahedrons, respectively. Thedouble precision arrays x,y, and z contain the locations of the vertices, while vert is an integerarray of dimension 8*nt that contains the node numbers of the vertices of the hexahedrons. Thenodes are ordered in the following way: �rst the front lower left, then the front lower right, thenthe top right, the top left, the back lower left, the back lower right, the back upper right, and theback upper left. The integer bn contains the number of quadrilaterals that de�ne the boundary,and bound is an integer array of size 4*bn that contains the indices of the vertices of the boundaryquadrilaterals. Using the right-hand rule, the normals to these quadrilaterals point out of thedomain.2.2.5 Adding a MappingThough conceptually it is possible to think of mapping an entire unstructured grid, we deem thisunnecessary, since unstructured grids by their nature can be constructed for complicated geometries.However, it is desirable for unstructured grids to support curved boundaries. This capability isobtained by providing an optional mapping function that is applied to only the boundary nodesduring grid re�nement.The following example de�nes a mapping that creates a Pacman-type domain:#define SIGN(a) ((a) < 0 ? -1.0 : 1.0)void MapPointCircle(inpoint,outpoint,circle)DDPoint *inpoint, *outpoint;CircleCtx *circle;{ double x = inpoint->x - circle->x;double y = inpoint->y - circle->y, theta;if (x == 0.0) y = SIGN(y)*circle->r;else {theta = atan((y/x)*SIGN(x)*SIGN(y));if (theta > circle->theta+.0000001 || x < 0.0) {x = SIGN(x)*circle->r*cos(theta);y = SIGN(y)*circle->r*sin(theta);}}outpoint->x = circle->x + x; outpoint->y = circle->y + y;}This mapping is then assigned to a grid, using the following code:10

map = DDMap2dCreate(MapPointCircle,(void *)0,&circle);DDGridAddBoundaryMap(grid,map);In the previous example the function maps only a single point. A similar C function could certainlybe written to map a set of points.
Figure 2.3: Pacman grid from a mappingOnce the grid has been re�ned several times, we obtain the grid as depicted in Figure 2.3. Notethat this grid is probably not a good grid for the given domain; it is intended just as an exampleof how mapped grids may be created.2.3 Operations on GridsThere are a variety of pre-de�ned operations you may apply to grids.2.3.1 Re�ning GridsAll of the grids may be re�ned by using the commandDDGridRefine(grid);Obviously, re�nement means something slightly di�erent for each di�erent grid.The uniform, tensor product and mapped grids are re�ned by inserting a new set of mesh lineshalfway between each mesh line on the original grid. The triangular grids are re�ned by dividingeach element into four similar elements by bisecting the edge of each side. Quadrilateral grids arere�ned by dividing into four elements. Hexahedral elements are divided into eight elements byinserting a new node at the center of each hexahedron, the center of each face, and the center ofeach edge. The tetrahedral elements are re�ned by inserting a new node at the center of each edge.For all the elements except the tetrahedron, the re�nement ensures shape regular elements.It is desirable to be able to perform partial re�nement of a grid. However the Extensible PDESolvers package currently contains no code to do this, since it is somewhat tricky.2.3.2 Grid CoarseningIt is sometimes useful to coarsen a grid automatically, for instance, if one wishes to apply multigridwhen only the �nest grid is given. Grid coarsening may be done using the Extensible PDE Solverspackage by using the command 11

DDGridUnRefine(grid,&newgrid);Since unre�ning can be a complicated matter, it is possible to modify the way a grid is coarsened,with the commandDDGridAddUnRefineContext(grid,...);See the manual pages for the latest version of this command.At the moment the only type of unstructured grid that may be coarsened is a grid of triangles.The package does this by �rst computing a maximal independent set of the boundary and interiornodes of the grid and then triangulating these using the code of T. Baker. The structured gridsare coarsened by removing every second grid line in all directions.2.3.3 Saving and Loading GridsIt is possible to save any grid to a �le (except the mappings) and read it back in at a later time.Saving a grid is done with the commandDDGridStore(grid,filename);A grid may be read in from a �le with the commandgrid = DDGridLoad(filename);2.3.4 GraphicsBefore any graphic operations can be performed, at least one graphics window must be opened. Todo so, use the commandsXBWindow win;win = XBWinCreate();XBQuickWindow(win,hostname,WindowTitle,x,y,nx,ny);The arguments are win, the window to open; hostname, the name of the display to open thewindow on (usually \" to get the default monitor); WindowTitle, the title to appear at the top ofthe window; x,y the location of the upper left corner of the window in the display ((0,0) denotesthe upper left corner); and nx,ny the width and height of the window in pixels. For example,win = XBWinCreate();if (XBQuickWindow(win,"","Grid",0,0,600,600)) {XBError(); exit(1);}These routines are all part of the xtools component of PETSc.It is useful to be able to de�ne the size and location of the window in grid coordinates (thesame coordinates by which the grids are de�ned). This is done by using the XBInfo structure. Forinstance, to de�ne a region that allows a window to view from x = -1 to x = 1 and y = 0 to y =1, useXBInfo region;region.xmin = -1.0; region.xmax = 1.0;region.ymin = 0.0; region.ymax = 1.0;region.hold = 1; 12

The variable hold contains an integer indicating how long in seconds the image should be heldin the window before the program continues. hold = 0 indicates that it should hold for no time,while hold = -1 indicates it should hold until the user inputs a keystroke or mouse click. Fortwo-dimensional images you should hit the carriage return, while for three-dimensional images theleft mouse button allows you to rotate the image, and the center button indicates that the programshould continue.To display a grid's boundary, use the commandDDGrid *grid;XBWindow win;XBInfo region;int color;DDGridDrawBoundary(win,®ion,grid,color);The arguments are the window in which to draw, the region that relates the grid coordinates tothe window coordinates, the grid, and the color to draw the grid boundary. One may pass in 0instead of ®ion to use the default region.Displaying the entire grid is done with the commandDDGridDraw(win,®ion,grid,color);The grid data structure also has its own (secret) copy of a region. It uses this by default if theuser does not pass in a region. To set the hold for a grid, use the commandDDGridSetHold(grid,holdvalue);Here holdvalue indicates the time in seconds to hold the �gure.It is also possible for two-dimensional grids to allow the user to \zoom" in on a portion of thegrid. The commandint color;XBWindow win;DDGrid *grid;DDGridZoom(win,0,grid,color,0);displays the grid. The user may \zoom" in by pressing the left mouse button and \zoom" out bypressing the center mouse button. The right mouse button returns from the function.2.3.5 Partitioning GridsIt is sometimes useful to partition a grid into several (possibly overlapping) subgrids. This partion-ing is, for example, useful for block iterative methods (such as overlapping Schwarz). Partitioningis done with the commandDDGrid *grid;int minsize,levels,overlap;IndexArray *indices;indices = DDGridPartition(grid,minsize,levels,overlap);The argument minsize is the minimum number of nodes allowed in a subgrid, while overlap isthe number of levels of overlap between subgrids. The number of subgrids is given by 2^overlap.The structure IndexArray, which is a linked list of node numbers in each subgrid, is given by13

struct _IndexArray {int n, *ii;struct _IndexArray *next;};typedef struct _IndexArray IndexArray;The integer array ii contains the indices for the subdomains, and n is the number of nodes in thelist.Since there are many ways to partition a grid, the Extensible PDE Solvers package comeswith several defaults. The �rst is to use a crude recursive spectral bisection method to do thepartitioning. This is e�ective for small grids, but is very slow for grids with more than a fewhundred unknowns. You can also use the natural ordering of the nodes in the grid to do thepartitioning. This generally gives bad partitions but does have the advantage of being very fast tocalculate. A grid can be forced to use the naive partitioner with either the commandDDGridUseNaivePartitioner(grid);or DDGridUseNaivePartitionerWithCommandLine(grid,argc,args);If the string -naive is in the command line, then the naive partitioner is associated with the givengrid.The Extensible PDE Solvers pakcage also has interfaces to several other partitioning packages.These can be accessed with the commandsDDGridUsePamPartitionerWithCommandLine(grid,argc,args);DDGridUseBaSiPartitionerWithCommandLine(grid,argc,args);DDGridUseChacoPartitionerWithCommandLine(grid,argc,args);The Pam partitioner was written by Fran�coise Lamour and Patrick Ciarlet, the BaSi partitionerwas written by Stephen Barnard and Horst Simon, and the Chaco partitioner was written by BruceHendrickson and Robert Leland. Refer to the software to determine how these packages may beobtained. The Pam partitioner is a fast, greedy partitioner, while the other two are slower methodsbased on recursive spectral bisection.2.4 Manipulating PointsIt is sometimes useful to be able to manipulate points in space. The Extensible PDE Solverspackage has the concept of both a point, DDPoint and a set of points, DDPoints. A set of points iscreated with the commandsDDPoints *pts;pts = DDPoints2dCreate(n);pts = DDPoints3dCreate(n);where n is the number of points needed.Various basic operations can be performed on points, for instance,14

pts2 = DDPointsCopy(pts1);pts3 = DDPointsUnion(pts1,pts2);pts3 = DDPointsDifference(pts1,pts2);DDFunction *function;pts2 = DDPointsWithNonZeroFunction(pts1,function);The �nal routine DDPointsWithNonZeroFunction() returns all the points for which the givenDDFunction is nonzero. See below for the de�nition of DDFunction.It is also possible to draw points in a window with the commandDDPointsDraw(win, ®ion, pts, color);It is possible to determine which points lie in a grid with the commandpts2 = DDGridGetPointsIn(grid,pts1,on);The integer
ag on should be 1 if points on the boundary of the grid are to be included; otherwiseit should be 0. Points on the boundary of a domain can be found by usingpts2 = DDGridGetPointsOnBoundary(grid,pts1);2.5 Manipulating Mathematical FunctionsIn de�ning PDEs we must be able to represent mathematical functions in a convenient way. Thisis done in the Extensible PDE Solvers package using a DDFunction. A DDFunction is simply arealization of a mathematical function. A function is created with the commandDDFunction *function;int in, out;void (*f1)(),(*f2)(),*context;function = DDFunctionCreate(in,out,f1,f2,context);The mathematical function has in input variables and is (possibly) vector valued with out compo-nents. The argument (*f1)() is a user-provided C function that takes three arguments: a DDPoint*, a double *, and the pointer to a function context, context. The argument (*f2)() is a similarC function whose �rst argument is DDPoints *. The function context, context, is a way of gettingany needed information into the user's C function. For example, if the mathematical function wewish to implement has two parameters and is given byf(x1; x2) = �x1 + �x2;then the C functions could be written as follows.typedef struct {double alpha, beta;} MyContext;void f1(pt,out,ctx);double *out;DDPoint *pt;MyContext *ctx;{ *out = ctx->alpha*pt->x + ctx->beta*pt->y;} 15

void f2(pts,out,ctx);double *out;DDPoints *pts;MyContext *ctx;{ int i, n = pts->n;for (i=0; i<n; i++) {out[i] = ctx->alpha*pts->x[i] + ctx->beta*pts->y[i];}}A DDFunction may be evaluated at a set of points by using the commandDDDFunction *u;DDPoints *pts;u = DDFunctionEvaluatePoints(func, pts, 0);This routine returns a discrete function containing the values of the function at the given points.A DDDFunction contains essentially an array of doubles with the values of the function and a copyof the points at which it was evaluated.2.6 Adding New Types of GridsIt is possible to add new types of grids to the package or to modify those already there. You mustprovide functions that perform the grid operations. Begin by looking at the �le domain/grid.h,and then the simplest grid implementation that is contained in domain/grid/mesh2d.c.

16

Chapter 3Working with PDEs andDiscretizationsThis chapter explains how you de�ne the partial di�erential equation and the discretization to beused to �nd approximate solutions.3.1 De�ning the PDEThe Extensible PDE Solvers package comes with two default PDEs: the scalar convection-di�usionequation (actually, in the present version, the convection is ignored), and the equations of isotropiclinear elasticity. Other simple, second order linear elliptic equations could be added. To solve otherproblems, the biharmonic for example, would require some reorganization.To de�ne a convection-di�usion PDE in two dimensions of the form�r ax(x; y) 00 ay(x; y) !ru = f;you must �rst de�ne the functions ax(), ay(), and f() and then create the PDE. You may bedo this by using the commandsDDFunction *f,*ax,*ay;DDPDE *pde;f = DDFunctionCreate(2,1,rhs1,rhs2,0);ax = DDFunctionCreate(2,1,ax1,ax2,0);ay = DDFunctionCreate(2,1,ay1,ay2,0);pde = DDPDECreateConvectionDiffusion2(f,ax,ay,0,0,0);The �nal three arguments (where zero is passed above) are for the convection terms and theHelmholtz term. At the moment they are ignored. If you would like to use default values of -1 forax and ay, simply pass in 0 as the argument,pde = DDPDECreateConvectionDiffusion2(f,0,0,0,0,0);The convection-di�usion equation in three dimensions can be created withpde = DDPDECreateConvectionDiffusion3(f,ax,ay,az,0,0,0,0);17

Again, a zero can be passed in the locations of ax,ay, or az to represent the default function of -1.You create a constant coe�cient PDE for the equations of isotropic linear elasticity in twodimensions with the commanddouble E = 1.0, nu = .3;pde = DDPDECreateIsoLinearElasticity2(f,E,nu,0,0,alpha);For variable coe�cients, useDDFunction *E, *nu;pde = DDPDECreateIsoLinearElasticity2(f,0,0,E,nu,alpha);In three dimensions the only di�erence is that the DDFunctions E and nu are functions of 3 variablesand the command ispde = DDPDECreateIsoLinearElasticity3(f,0,0,E,nu);The model used in two dimensions is of plane strain when alpha=0 and plane stress when alpha=1.Other PDEs may be de�ned by using the source code for one of those introduced above as atemplate.3.2 De�ning Boundary ConditionsThe Extensible PDE Solvers package currently provides support for general Dirichlet and homo-geneous Neumann boundary conditions. You may apply a combination of di�erent boundary con-ditions on di�erent parts of the boundary. To apply Dirichlet boundary conditions on the entireboundary, use the commandDDBC *bc;DDFunction *g;bc = DDBCCreateDirichlet(g,(void *)0,(void *)0);On the piece of the boundary de�ned by a characteristic function, charf, useDDBC *bc;DDFunction *g, *charf;bc = DDBCCreateDirichlet(g,charf,0);On the piece of the boundary that lives in another grid, useDDBC *bc;DDFunction *g;DDGrid *anothergrid;bc = DDBCCreateDirichlet(g,0,anothergrid);For homogeneous Neumann boundary conditions, usebc = DDBCCreateNeumann(0,0,0,0,charf,anothergrid);The �rst four arguments are, at present, ignored. None, or only one, of the last two argumentsshould be given. 18

3.3 Using a DiscretizationCreating a discretization simply requires calling the routineDDPDEDiscretization *disc;disc = DDPDEDiscretizationCreate(type);DDPDEDiscretizationSetUp(disc);The type can be any of DDPDEDISCFD5pt, DDPDEDISCFD7pt, DDPDEDISCFE2dLIN, DDPDEDIS-CFE3dTRILIN, DDPDEDISCFE2dBILIN, or DDPDEDISCFE3dLIN.For some of the �nite element discretizations, it is possible to set the particular numericalintegration scheme that is to be used. This is done withDDPDEDiscretizationSetIntegrationScheme(disc,order,type);The integer arguments order and type indicate the order of the numerical integration scheme youwould like used and the particular scheme of that order. Usually type is set to zero. This routineshould be called after DDPDEDiscretizationCreate and before DDPDEDiscretizationSetUp.Implementing the DiscretizationsThis section may be skipped by the causal reader who is mainly interested in using the packageand less interested in its design.The implementation for �nite di�erences is straightforward, achieves little code reuse, and isessentially not data structure neutral. The implementation was just enough to work for the di�usionterm in the convection di�usion equation.The implementation for �nite elements is more ambitious and tries to obtain code reuse betweendi�erent PDEs and di�erent types of elements. For instance, most of the element sti�ness codeis shared by all the elements. It is also designed in a data-structure-neutral way to facilitate theaddition of new elements or PDEs. The basic design is as follows:� DDPDEDiscretetizationSetUp() determines the numerical integration points on the refer-ence element and evaluates the shape functions and their derivatives at the nodes,� DDDomainDiscretize loops over all the elements and calls� DDiUniversalStiffnessElement on each element, which loops over the integration pointsand calculates the derivatives of the shape function by using the Jacobian of the mapping.� The contribution to the sti�ness matrix for a single integration point is calculated by callingthe bilinear form de�ned for the particular type of PDE being solved.3.4 Discretizing the BoundaryThe Extensible PDE Solvers package is remarkably simple minded about discretizing the boundaryconditions. At the moment you should use the commandDDBCDiscretization *bcdisc;bcdisc = DDBCDiscretizationCreateSimple();19

Chapter 4Solving a PDESolving a PDE requires the following steps:� de�ne the grid,� de�ne the PDE,� de�ne the discretization of the PDE,� de�ne the boundary condition(s), and� de�ne the discretization of the boundary conditions.Once these tasks have been performed, all of the information is gathered together into a variableof type DDDomain with the commandsdomain = DDDomainCreate(grid,disc,pde);DDDomainAddBoundary(bc,bcdisc);You may call DDDomainAddBoundary several times with di�erent boundary conditions for di�erentparts of the boundary.Now we are ready to discretize and solve the PDE. The universal interface for this is theDDDomainSolver. A complete linear, second-order elliptic PDE solver maybe written asDDDomainSolver *ds;ds = DDDomainSolverCreateWithCommandLine(domain,argc,argv);DDDomainSolverSetUpWithCommandLine(ds,argc,argv);DDDomainSolverSolve(ds);This one set of commands gives access to all of the linear system solvers, including several variantsof multigrid. The possible command line arguments are listed in the next two sections.The solvers come with a set of interfaces that allow the approximate solution and error to bevisualized during the solution process. This may be done in several ways. The simplest is to plot aline graph of the norm of the residual and the error at each iteration of the iterative method. Thismay be done with the commandsXBWindow win;DDDomainSolver *ds;...win = XBWinCreate();XBQuickWindow(win,"","Residual",600,0,300,300);DDDomainSolverAddLineGraph(ds,win); 20

If you wish to plot the actual solution or error, you may use the commandsXBWindow win1, win2;...DDDomainSolverAddWindow1(ds,win1,0);DDDomainSolverAddWindow2(ds,win2,0);The (optional) third argument is a XBInfo region that would de�ne which portion of the window isto be used for displaying the solution (or error). In two dimensions the approximate solution anderror are displayed using a color contour plot. In three dimensions there is at present no code fordisplaying the approximate solutions.Of course, to visualize the error, the solver code must know the exact solution. You can tell theDomainSolver the exact solution by de�ning a DDFunction for that solution and then callingDDFunction *solution;DDDomainSolver *ds;DDDomainSolverAddSolution(ds,solution);The solvers may also symbolically display the sparse matrix representation of the discretizedoperator. In addition, if a direct LU factorization is used, it may display the reordered matrix usedto decrease �ll. Several of the examples demonstrate this capability.4.1 Classical SolversThe command DDDomainSolverSolve has access to all of the linear system solvers in the Simpli-fied Linear Equation Solvers (SLES) component of PETSc [1]. It also has access to all of theKrylov space methods in KSP (Krylov Space Package) [2]. They may be accessed with commandline options.The command line options for the classical solvers are-itmethod ITMETHOD - Krylov space method to use-restart n - restart for GMRES-svmethod SVMETHOD - type of preconditioner or direct method-tol t - tolerance on decrease in residual-its n - maximum number of iterations-fill n - levels of fill to use if ILU method is chosen-hold n - time to display each window, -1 means wait for input-subdomains m - number of subdomains for Schwarz methods-overlap n - overlap to use for Schwarz methods-additive - use additive Schwarz method, else defaults to multiplicative-showgrid - draws grid on contour plots-surface - draws surface plot rather than contour plots-levels r - number of levels to refine gridSubdomain options (if -svmethod osm used)-subsvmethod -subitmethod -subrestart -subtol -subits -subfillCommand Line Arguments for ITMETHODrichardson chebychev cg gmres tcqmr bcgs cgs tfqmr lsqr preonly crCommand Line Arguments for SVMETHODlu jacobi ssor ilu icc iccjp bdd osm nopre21

It is also possible to write code that allows access only to the classical iterative methods andnot the multigrid solvers; this may be done with the commandsDDOneGrid *ds;ds = DDOneGridCreateWithCommandLine(domain,argc,argv);DDOneGridSetUpWithCommandLine(ds,argc,argv);DDOneGridSolve(ds);4.2 Multigrid SolversIn addition to the classical linear equation solvers, a variety of multigrid solvers may be used. Toaccess the multigrid solvers, use the command line option -multigrid. The command line optionsfor the multigrid solvers are-itmethod method - Krylov space method to use-restart n - restart for GMRES-levels n - number of levels-jacobi - use Jacobi smoothing-gs - use Gauss-Seidel smoothing rather than default symetric GS-cycles n - 1 for V cycle 2 for W cycle-presmooths n - number of pre smoothing steps-postsmooths n - number of post smoothing steps-additive - use additive multigrid rather than traditional-full - use full multigrid, not just cycles-tol t - tolerance on decrease in residual-its n - maximum number of iterations-hold n - time to display each window, -1 means wait for input-surface - draws surface plot rather than contour plots-showgrid - draws grid in contour plotsCommand Line Arguments for ITMETHODrichardson chebychev cg gmres tcqmr bcgs cgs tfqmr lsqr preonly crIt is also possible to compile code that has access to only the multigrid solvers and not theclassical iterative methods. This may be done with the commandsDDMultiGrid *ds;ds = DDMultiGridCreateWithCommandLine(domain,argc,argv);DDMultiGridSetUpWithCommandLine(ds,argc,argv);DDMultiGridSolve(ds);In fact, the DDDomainSolver routines are simply wrappers that call either the DDOneGrid routinesor the DDMultiGrid routines, based on command line arguments.
22

Chapter 5Organization5.1 ExamplesThe directory domain/examples contains over 50 complete examples that demonstrate di�erentaspects of the Extensible PDE Solvers package. In addition, the examples directory contains avariety of two dimensional unstructured grids. Since the examples are undergoing constant revision,they may be slightly di�erent from those indicated in this section.� ex1 - Indicates how di�erent types of grids may be de�ned and drawn.� ex2 - Displays some simple grids in two dimensions.� ex3 - Gives contour plots of discrete functions in two dimensions.� ex4 - Saves a grid to a �le.� ex5 - Loads grids from �le and displays.� ex6 - Finds unions of sets of points and plots.� ex7 - Finds points in a domain.� ex8 - Displays uniform grid in three dimensions.� ex9 - Finds points in a three-dimensional domain and its boundary.� ex10 - Finds points in a three-dimensional mapped grid.� ex11 - Solves a Poisson problem on a uniform grid in two dimensions.� ex12 - Solves a Poisson problem on a uniform grid in two dimensions using multigrid.� ex13 - Solves a Poisson problem on a triangular grid.� ex14 - Solves a Poisson problem on a triangular grid using multigrid.� ex15 - Solves a Poisson problem on a mapped grid using multigrid.� ex16 - Solves a Poisson problem on a Pacman shaped domain using multigrid.� ex17 - Solves a Poisson problem on a annulus using a quadrilateral grid and multigrid.23

� ex18 - Solves a Poisson problem on a uniform grid in three dimensions with the onegrid solver.� ex19 - Solves a Poisson problem on a uniform grid in three dimensions with multigrid.� ex20 - Solves a Poisson problem on a mapped grid in three dimensions with the onegridsolver.� ex21 - Solves a Poisson problem on a mapped grid in three dimensions with multigrid.� ex22 - Solves a Poisson problem on a sphere with the onegrid solver using a hexahedral grid.� ex23 - Solves a Poisson problem on a sphere with multigrid using a hexahedral grid.� ex24 - Solves a Poisson problem on a sphere with the onegrid solver using a tetrahedral grid.� ex25 - Solves a Poisson problem on a sphere with multigrid using a tetrahedral grid.� ex26 - Solves a variable Poisson problem on a uniform grid with onegrid solver.� ex27 - Solves a variable Poisson problem on a mapped grid with onegrid solver.� ex28 - Solves a variable Poisson problem on a uniform grid with onegrid solver in threedimensions.� ex29 - Solves a variable Poisson problem on a mapped grid with onegrid solver in threedimensions.� ex30 - Uses alternating Schwarz in two dimensions with a Poisson problem.� ex31 - Uses alternating Schwarz in two dimensions with a Poisson problem.� ex32 - Uses alternating Schwarz in two dimensions with a Poisson problem.� ex33 - Uses alternating Schwarz in two dimensions with a Poisson problem.� ex34 - Uses alternating Schwarz in three dimensions with a Poisson problem.� ex35 - Solves a linear elasticity problem on a uniform grid in two dimensions.� ex36 - Solves a linear elasticity problem on a uniform grid in two dimensions solved withmultigrid.� ex37 - Solves a linear elasticity problem on a uniform grid in three dimensions.� ex38 - Solves a linear elasticity problem on a uniform grid in three dimensions with multigrid.� ex39 - Uses alternating Schwarz in two dimensions with linear elasticity.� ex40 - Uses alternating Schwarz in three dimensions with linear elasticity.� ex41 - Solves a Poisson problem in two dimensions on a grid read from a �le.� ex42 - Solves a linear elasticity problem in two dimensions on a grid read from a �le.� ex43 - Solves a Poisson problem in two dimensions on a grid read from a �le, using multigrid.� ex44 - Solves a linear elasticity problem in two dimensions on a grid read from a �le.24

� ex45 - Reads a grid in from a �le and displays it, allowing the user to zoom in parts of thegrid.� ex46 - Partitions grids from �les.� ex47 - Unre�nes a grid read in from a �le.� ex48 - Triangulates a simple region drawn with the mouse.� ex49 - Solves three dimensional Poisson problem on a grid read in from a �le.� ex50 - Solves three dimensional linear elasticity problem on a grid read in from a �le.� ex51 - Displays a three dimensional grid read in from a �le.5.2 DirectoriesThe directories are organized in a logical fashion matching the abstract design.bc.h bcdisc.h comtype dfunc.h points.hdisc/ domain.c domain.h dop.h examples/file/ func/ func.h graphics/ graphics.hgrid.h makefile map/ map.h op/part/ pde/ pde.h pdedisc.h points/readme schwarz/ solvers/ sparse/ xtools/fdomain.h grid/Each of the major abstract components grids, pdes, discretizations, boundary conditions,and boundary condition discretizations has its own include �les. The include �le domain.his the master include �le that should be included in all codes that use the Extensible PDE Solverspackage. In addition, is a subdirectory for each component contains the source code for that com-ponent. The manual pages for each routine indicate the �le and directory that contain the sourcefor that routine.
25

Chapter 6Future PossibilitiesI may write a new version of the Extensible PDE Solvers package in the future, using and extendingthe techniques that we have developed over the past few years in writing PETSc. The new versionwould be developed using more of the ideas of ComponentWare. Each component (for instancegrids) would be more independent, and the interfaces would be made cleaner, so that other objectscannot access the grid data structures at all. One of the drawbacks of the code as it is written is thatcertain objects have to check the type of other types of objects. For instance, the discretizationcode has hardwired checks on certain types of PDEs and grids. In ideal ComponentWare thistype of coding would be unnecessary and, in fact, not even permitted. Whether it is possible todetermine the most suitable abstractions to do this \correctly" is not completely clear to me.Other features that it would be nice to add are� support for staggered grids/mixed methods,� support across parallel platforms,� a TCL/TK interface, and� other discretizations such as spectral, collocation, and Sinc methods.If you �nd this package useful or interesting and have any ideas on how it may be betterorganized or presented, please send any comments to bsmith@mcs.anl.gov.
26

Chapter 7Summary of RoutinesThis chapter contains a brief summary of the routines in the Extensible PDE Solvers package. Aneasier way to access the data is through the man pages using toolman.Most of these routines require the include �les#include "tools.h"#include "domain/domain.h"#include "domain/solvers/solver.h"#include "xtools/basex11.h"Fortran 77 programs should include domain/fdomain.h and also the �le domain/solvers/fsolver.h.A special note for Fortran programmers: all of the datatypes (such as DDGrid) must be declaredas integers in the Fortran code.void DDGridDestroy(grid)DDGrid *grid; Destroys a grid created with DDGrid*Create*().void DDGridRe�ne(grid)DDGrid *grid; Re�nes a grid created with DDGrid*Create*().void DDGridUnRe�ne(grid,newgrid)DDGrid *grid,**newgrid; UnRe�nes a grid created withDDGrid*Create*(). Actually works only fortriangular grids.DDGrid *DDGridCopy(grid)DDGrid *grid; Copies grid.DDPoints *DDGridGetPointsIn(grid,points,bound)DDGrid *grid;DDPoints *points;int bound; Returns the nodes on a grid.DDPoints *DDGridGetPointsOnBoundary(grid,points)DDGrid *grid;DDPoints *points; Returns the nodes on the boundary of a grid.IndexArray *DDGridPartition(grid,size,levels,overlap)DDGrid *grid;int size, overlap, levels; Partitions a grid into a bunch of smaller grids.DDGrid *DDGridSubGrid(grid,index)DDGrid *grid;IndexArray *index; Given a grid and a index array, returns thesubgrid.DDGrid *DDGrid2dCreateUniform(nx,ny,xmin,xmax, ymin,ymax)int nx,ny;double xmin,xmax,ymin,ymax; Creates a 2d uniform mesh. The mesh islogically rectangular; an optional mappingfunction may be added to map to the truecoordinates using DDGridAddMap().DDGrid *DDGrid2dCreateTensor(nx,ny,x,y)int nx,ny;double *x,*y; Creates a 2d tensor product mesh. The mesh islogically rectangular; an optional mappingfunction may be added to map to the truecoordinates using DDGridAddMap().void DDGridAddMap(grid,map)DDGrid *grid;DDMap *map; Adds a map to an already created grid. DDGridmust be of type UNIFORM or TENSOR.27

DDGrid *DDGrid3dCreateUniform(nx,ny,nz,xmin,xmax,ymin,ymax,zmin,zmax)int nx,ny,nz;double xmin,xmax,ymin,ymax,zmin,zmax; Creates a 3d uniform mesh. The mesh islogically rectangular; an optional mappingfunction may be added to map to the truecoordinates using DDGridAddMap().DDGrid *DDGrid3dCreateTensor(nx,ny,nz,x,y,z)int nx,ny,nz;double *x,*y,*z; Creates a 3d tensor product mesh. The mesh islogically rectangular; an optional mappingfunction may be added to map to the truecoordinates using DDGridAddMap().DDGrid *DDGridCreateTriangles(numvert,x,y,numtri,vert,bn,bound)int numvert, numtri, *vert, bn, *bound;double *x, *y; Creates a 2d unstructured grid using triangularelements.void DDGridAddBoundaryMap(grid,map)DDGrid *grid;DDMap *map; Allows a function to be given that de�nes theboundary of a grid. If the grid is re�ned, newboundary points are shifted so that they lie onthe true boundary. Works only for unstructuredgrids.DDGrid *DDGridCreateQuadrilaterals(numvert,x,y,numquad,vert,bn,bound)int numvert, numquad, *vert, bn, *bound;double *x, *y; Creates a 2d unstructured grid usingquadrilateral elements.void DDGridToQuadrilaterals(grid)DDGrid *grid; Takes a grid and converts to unstructured, usingquadrilaterals.void DDGridToTriangles(grid)DDGrid *grid; Takes a grid and converts to unstructured, usingtriangles in two dimensions.DDGrid *DDGridCreateHexahedrals(numvert,x,y,z,numbrick,vert,bn,bound)int numvert, numbrick, *vert, bn, *bound;double *x, *y, *z; Creates a 3d unstructured grid using hexahedral(bricks are a special case with parallel sides)elements.void DDGridToHexahedrals(grid)DDGrid *grid; Takes a grid and converts to unstructured, usinghexahedral elements.DDGrid *DDGridCreateTetrahedrals(numvert,x,y,z,numtet,vert,bn,bound)int numvert, numtet, *vert, bn, *bound;double *x, *y, *z; Creates a 3d unstructured grid using tetrahedralelements.void DDGridToTetrahedrals(grid)DDGrid *grid; Takes a grid and converts to unstructured, usingtetrahedrons.DDDFunction *DDDFunctionCreate(n,dimin,dimout)int n,dimin,dimout; Builds a DDDFunction structure.DDDFunction *DDDFunctionCopy(dfunc)DDDFunction *dfunc; Copies a DDDFunction structure.void DDDFunctionDestroy(f)DDDFunction *f; Frees space created by DDDFunctionCreate().void DDDFunctionAddPoints(f,p)DDDFunction *f;DDPoints *p; Adds the points associated with a discretefunction.void DDDFunctionAddDomain(f,g)DDDFunction *f;DDDomain *g; Adds a grid associated with a discrete function.void DDDFunctionScatterInto(df,seg,n,v,I)DDDFunction *df;int seg,n,*I;double *v; Scatters values from v into a particular segmentof a discrete function.DDDFunction *DDDFunctionDisjointUnion(f1,f2)DDDFunction *f1, *f2; Takes two DDDFunctions and forms their unionassuming that they have no common elements.DDDFunction *DDFunctionEvaluatePoints(f, p, b)DDFunction *f;DDPoints *p;DDDFunction *b; Evaluates a function at a set of points. UseDDFunctionEvaluatePoint() for a single point.DDDFunction *DDFunctionEvaluateDomain(f, d, b)DDFunction *f;DDDomain *d;DDDFunction *b; Evaluates a function at all points on domain. UseDDFunctionEvaluatePoint() for a single point.DDFunction *DDFunctionCreate(in,out,f1,f2,context)void (*f1)(),(*f2)();int in,out;void *context; Builds a DDFunction structure, from two Cfunctions.void DDDFunctionUpDateXBInfo(df,info,
ag)DDDFunction *df;XBInfo *info;int
ag; Given a discrete function and an XBInfo,updates the XBInfo so that the discrete functionwill �t completely in the plotting frame.void DDDFunctionAbsoluteValue(df)DDDFunction *df; Given a discrete function, replaces eachcomponent with its absolute value.void DDDFunctionPrint(�le,df)DDDFunction *df;FILE *�le; Prints the values in a discrete function.28

DDPoints *DDPoints2dCreate(n)int n; Creates a DDPoints data structure.DDPoints *DDPoints3dCreate(n)int n; Creates a DDPoints data structure.void DDPointsDestroy(points)DDPoints *points; Destroys a DDPoints structure created withDDPoints2dCreate() or DDPoints3dCreate().DDPoints *DDPointsCopy(points)DDPoints *points; Copies a DDPoints structure created withDDPoints2dCreate() or DDPoints3dCreate().DDPoints *DDPointsUnion(p1,p2)DDPoints *p1, *p2; Given two sets of points, returns their union.DDPoints *DDPointsDi�erence(p2,p1)DDPoints *p1, *p2; Given two sets of points, returns all points in the�rst set that are not in the second.DDPoints *DDPointsWithNonZeroFunction(allpoints,function)DDPoints *allpoints;DDFunction *function; Returns the points for which the function wasnonzero.DDMap *DDMap2dCreate(point,mesh,ctx)void (*point)(),(*mesh)(), *ctx; Builds a mapping structure.DDMap *DDMap3dCreate(point,mesh,ctx)void (*point)(),(*mesh)(), *ctx; Builds a mapping structure.void DDMapMesh(mesh, points)DDMesh *mesh;DDPoints *points; Maps a mesh of points. Use DDMapPoints() tomap a set of points. Use DDMapPoint() to mapa single point.void DDGridToPS(grid,�lename)DDGrid *grid;char *�lename; Prints two dimensional grid to a Postscript(TM)�le.void DDPointsDraw(window,region,points,color)DDPoints *points;XBWindow window;XBInfo *region;int color; Draws a set of points.void DDGridDraw(window,region,grid,color)DDGrid *grid;XBWindow window;XBInfo *region;int color; Draws a grid.void DDGridDrawZoom(window,inregion,grid,color,outregion)DDGrid *grid;XBWindow window;XBInfo *inregion,*outregion;int color; Draws a grid; allows the user with a mouse tozoom in and out of the grid.void DDGridDrawBoundary(window,region,grid,color)DDGrid *grid;XBWindow window;XBInfo *region;int color; Draws boundary of a grid.void DDDrawDFunction(window,region,uin,type,wininfo)XBWindow window,wininfo;DDDFunction *uin;int type;XBInfo *region; Draws a discrete function. Works only in twodimensions.void DDDrawDFunctionZoom(window,inregion,uin,type,wininfo)XBWindow window,wininfo;DDDFunction *uin;int type;XBInfo *inregion; Draws a discrete function. Works only in twodimensions.void DDGridAddTriangleUnRe�neContext(grid,type,win,region,trace)DDGrid *grid;int type,trace;XBWindow win;XBInfo *region; Allows one to change the type of unre�nementalgorithm to be used or display the unre�nementinteractively.DDGrid *DDGridInputTriangularGrid(win)XBWindow win; Allows one to use the mouse to input a grid.DDPDEDiscretization *DDPDEDiscretizationCreate(type)DDPDEDISCTYPE type; Builds a discretization structure.void DDPDEDiscretizationRegister(name, sname, create)int name;char *sname;DDPDEDiscretization *(*create)(); Given a discretization name (DDDISCTYPE)and a function pointer, adds the discretization tothe mesh package.void DDPDEDiscretizationRegisterDestroy() Frees the list of discretizations that have beenregistered by DDPDEDiscretizationRegister().void DDPDEDiscretizationGetMethod(Argc, argv, remove,sname, method)int *Argc,remove;char *argv, *sname;DDPDEDISCTYPE *method; Given the argument list, returns the selecteddiscretization method.29

int DDPDEDiscretizationHelp(argc,argv)int *argc;char **argv; Given the argument list, prints a help message if-help is one of the arguments.void DDPDEDiscretizationRegisterAll() Registers all the discretizations in the meshpackage. To prevent all the methods from beingregistered and thus save memory, copy thisroutine and register only those methods youdesire.DDBCDiscretization *DDBCDiscretizationCreateSimple() Creates a BCDiscretization structure for �niteelements or �nite di�erences.void DDPDEDiscretizationSetIntegra-tionScheme(disc,order,scheme)DDPDEDiscretization *disc;int order, scheme; Sets the numerical integration scheme to be usedwith a particular �nite element discretization. Ifthe discretization is not �nite elements, this callis ignored.DDPDE *DDPDECreateIsoLinearElasticity2(f,E,nu,e,n,alpha)double E,nu;DDFunction *f,*e,*n;int alpha; Creates a PDE structure for the Isotropicequations of elasticity.DDPDE *DDPDECreateIsoLinearElasticity3(f,E,nu,e,n)double E,nu;DDFunction *f,*e,*n; Creates a PDE structure for the equations ofelasticity.DDPDE *DDPDECreateConvectionDi�usion2(f,ax,ay,bx,by,c)DDFunction *f,*ax,*ay,*bx,*by,*c; Creates a PDE structure for the convectiondi�usion equation.DDPDE *DDPDECreateConvectionDi�usion3(f,ax,ay,az,bx,by,bz,c)DDFunction *f,*ax,*ay,*az,*bx,*by,*bz,*c; Creates a PDE structure for the convectiondi�usion equation.DDBC *DDBCCreateDirichlet(g,charf,grid)DDFunction *g,*charf;DDGrid *grid; Creates a BC structure for Dirichlet boundaryconditions. For the entire boundary, pass in 0 forthe charf and 0 for the grid. For a piece of theboundary de�ned by another grid, pass in thatgrid (this is useful for doing alternatingSchwarz).DDDOperator *DDDOperatorCreate(m,n,nc,dim)int m,n,nc,dim; Creates a holder for a discrete operator. Adiscrete operator is simply a (sparse) matrix plusinformation on the discrete function that itoperates on.void DDDOperatorDestroy(op)DDDOperator *op; Destroys the holder for a discrete operator; alsodestroys the matrix in it.void DDDOperatorApply(op,�n,fout)DDDOperator *op;DDDFunction *�n,*fout; Applies a discrete operator to a discrete function.void DDDOperatorApplyTrans(op,�n,fout)DDDOperator *op;DDDFunction *�n,*fout; Applies the transpose of a discrete operator to adiscrete function.void DDDOperatorApplyAdd(op,�n,fout)DDDOperator *op;DDDFunction *�n,*fout; Applies a discrete operator to a discrete function,and adds it to another discrete function.void DDDOperatorGaussSeidel(op,m,�n,fout)DDDOperator *op;DDDFunction *�n,*fout;int m; Applies a sweep of Gauss-Seidel with a discretelinear operator.void DDDOperatorSymmetricGaussSeidel(op,m,�n,fout)DDDOperator *op;DDDFunction *�n,*fout;int m; Applies a sweep of symmetric Gauss-Seidel witha discrete linear operator.void DDDOperatorJacobi(op,m,�n,fout)DDDOperator *op;DDDFunction *�n,*fout;int m; Applies a Jacobi iteration with a discrete linearoperator.DDDomainSolver*DDDomainSolverCreateWithCommandLine(domain,argc,args)DDDomain *domain;int *argc;char **args; Creates DDDomainSolver context for use insolving a PDE on a single domain. Uses eitherDDMultiGrid or DDOneGrid solver dependingon command line option -multigrid or -onegridvoid DDDomainSolverUseInitialGuess(ds)DDDomainSolver *ds; Forces the DDDomainSolver to use whatever isin the approximate solution as an initial guess ifan iterative solver is used.DDOneGrid *DDOneGridCreateWithCommandLine(domain,argc,args)DDDomain *domain;int *argc;char **args; Creates DDOneGrid context for use in solving aPDE on a single domain.DDOneGrid *DDOneGridCreate(domain,svmethod)SVMETHOD svmethod;DDDomain *domain; Creates DDOneGrid context for use in solving aPDE on a single domain.void DDOneGridSetUp(og)DDOneGrid *og; Called after call to DDOneGridCreate() butbefore call to DDOneGridSolve().30

DDDFunction *DDOneGridSolve(og)DDOneGrid *og; Solves PDE on domain.void DDOneGridDestroy(og)DDOneGrid *og; Frees space used by the onegrid solver.void DDOneGridAddLineGraph(og,win)XBWindow win;DDOneGrid *og; Adds window to plot line graph of residual andpossible error.void DDOneGridAddSolution(d,s)DDOneGrid *d;DDFunction *s; If one has a function for the PDE solution thismay be added to the DDOneGrid structure inorder to calculate errors, etc. UseDDOneGridAddDSolution() for discretesolutions.void DDOneGridSaveProblem(og,name)char *name;DDOneGrid *og; Saves to a �le the matrix, the RHS and thesolution. This problem may be read in on aparallel machine. Call before or after a call toDDOneGridSolve().DDMultiGrid *DDMultiGridCreateWithCommandLine(domain,domains,argc,args)DDDomain *domain,**domains;int *argc;char **args; Creates DDMultiGrid context for use in solvinga PDE on a single domain.void DDMultiGridSetUpWithCommandLine(ctx,argc,args)int *argc;char **args;DDMultiGrid *ctx; Called after a call toDDMultiGridCreateWithCommandLine().Allocates memory for multigrid solves.DDMultiGrid *DDMultiGridCreate(domain,indomains,l)DDDomain *domain,**indomains;int l; Creates DDMultiGrid context for use in solvinga PDE on a single domain.void DDMultiGridSetUp(ctx,itmethod)DDMultiGrid *ctx;ITMETHOD itmethod; Called after call to DDMultiGridCreate() butbefore call to DDMultiGridSolve().DDDFunction *DDMultiGridSolve(ctx)DDMultiGrid *ctx; Solves PDE on domain.void DDMultiGridDestroy(ctx)DDMultiGrid *ctx; Frees space used by MultiGrid.void DDMultiGridAddLineGraph(ctx,win)XBWindow win;DDMultiGrid *ctx; Adds window to plot line graph of residual andpossible error.void DDMultiGridAddSolution(d,s)DDMultiGrid *d;DDFunction *s; If one has a function for the PDE solution, thismay be added to the DDMultiGrid structure inorder to calculate errors, etc. UseDDMultiGridAddDSolution() for discretesolutions.void DDMultiGridUseJacobi(ctx,damp)DDMultiGrid *ctx;double damp; Forces the multigrid solver to use Jacobismoothing rather than Gauss-Seidel. This isintended mainly for comparison; there is usuallyno good reason to use Jacobi on a sequentialmachine.void DDMultiGridUseGS(ctx)DDMultiGrid *ctx; Forces the multigrid context to use Gauss-Seidelsmoothing rather than symmetric Gauss-Seidel.void DDDomainSolverAddWindow1(ctx, window, winfo)DDDomainSolver *ctx;XBWindow window;XBInfo *winfo; Adds window to DDDomainSolver structure forplotting grid, solution, etc.void DDDomainSolverUseSurfacePlot(ctx)DDDomainSolver *ctx; Draws solutions, errors, etc. using a surface plotrather than the default contour plot.void DDDomainSolverAddWindow2(ctx, window, winfo)DDDomainSolver *ctx;XBWindow window;XBInfo *winfo; Adds window to DDDomainSolver structure forplotting grid, solution, etc.void DDDomainSolverAddDSolution(ctx, solution)DDDomainSolver *ctx;DDDFunction *solution; If one has a discrete function for the PDEsolution, this may be added to theDDDomainSolver structure in order to calculateerrors, etc. Use DDDomainSolverAddSolution forcontinuous solutions.void DDDomainSolverSetHold(ctx, hold)DDDomainSolver *ctx;int hold; Determines how long graphics calls byDDDomainSolver routines will hold.void DDDomainSolverAddSolution(ctx, s)DDDomainSolver *ctx;DDFunction *s; Adds exact solution to domain solver context.void DDMultiGridAddWindow1(domain, window, winfo)DDMultiGrid *domain;XBWindow window;XBInfo *winfo; Adds window to multigrid structure for plottinggrid, solution, etc.void DDMultiGridAddWindow2(domain, window, winfo)DDMultiGrid *domain;XBWindow window;XBInfo *winfo; Adds window to multigrid structure for plottinggrid, solution, etc.31

void DDMultiGridAddDSolution(multigrid, solution)DDMultiGrid *multigrid;DDDFunction *solution; If one has a discrete function for the PDEsolution, this may be added to the DDMultiGridstructure in order to calculate errors, etc.void DDMultiGridSetNumberSmoothUp(multigrid,n)DDMultiGrid *multigrid;int n; Sets the number of postsmoothing steps to use.void DDMultiGridSetNumberSmoothDown(multigrid,n)DDMultiGrid *multigrid;int n; Sets the number of presmoothing steps to use.void DDMultiGridSetCycles(multigrid,n)DDMultiGrid *multigrid;int n; 1 for V cycle, 2 for W cycledouble DDMultiGridUseAdditive(multigrid)DDMultiGrid *multigrid; Uses additive form of multigrid rather thanclassical V or W cycle.double DDMultiGridUseFull(multigrid)DDMultiGrid *multigrid; Uses full multigrid as preconditioner.void DDMultiGridSetHold(ctx, hold)DDMultiGrid *ctx;int hold; Determines how long graphics calls by multigridroutines will hold.void DDMultiGridUseSurfacePlot(ctx)DDMultiGrid *ctx; Draws solutions, errors using a surface plotrather than the default contour plot.void DDOneGridAddWindow1(ctx, window, winfo)DDOneGrid *ctx;XBWindow window;XBInfo *winfo; Adds window to DDOneGrid structure forplotting grid and approximate solution.void DDOneGridUseSurfacePlot(ctx)DDOneGrid *ctx; Draws solutions, errors, etc. using a surface plotrather than the default contour plot.void DDOneGridAddWindow2(ctx, window, winfo)DDOneGrid *ctx;XBWindow window;XBInfo *winfo; Adds window to DDOneGrid structure forplotting error of approximate solution, etc.void DDOneGridAddDSolution(ctx, solution)DDOneGrid *ctx;DDDFunction *solution; If one has a discrete function for the PDEsolution, this may be added to the DDOneGridstructure in order to calculate errors. UseDDOneGridAddSolution for continuoussolutions.void DDOneGridSetHold(ctx, hold)DDOneGrid *ctx;int hold; Determines how long graphics calls byDDOneGrid routines will hold.void DDOneGridAddCoarseOneGrid(ctx, onegrid)DDOneGrid *ctx;DDOneGrid *onegrid; If one is using the overlapping Schwarz method,use this routine to set the coarse domain solverto use.void DDOneGridSetNumberSubdomains(ctx, n)DDOneGrid *ctx;int n; Sets the number of subdomains to use foroverlapping Schwarz.void DDOneGridSetOverlap(ctx, n)DDOneGrid *ctx;int n; Sets the overlap to use for overlapping Schwarz.void DDOneGridSetUseAdditive(ctx)DDOneGrid *ctx; Use additive Schwarz if the overlapping Schwarzmethod is used.void DDOneGridSetSubdomainMethod(ctx, method)DDOneGrid *ctx;SVMETHOD method; Sets the method to use on each subdomain if theoverlapping Schwarz method is used.DDSchwarz *DDSchwarzCreateWithCommandLine(domain1,domain2, argc, argv)int *argc;DDDomain *domain1, *domain2;char **argv; Creates DDSchwarz context for use in solving aPDE on two domains.void DDSchwarzSetUpWithCommandLine(schwarz,argc,args)DDSchwarz *schwarz;int argc;char **args; Allocates space, etc. for an alternating Schwarzsolver.void DDSchwarzSolve(schwarz)DDSchwarz *schwarz; Solves the two domain problem using alternatingSchwarz method.void DDSchwarzAddWindow1(s,w)DDSchwarz *s;XBWindow w; Adds window for displaying solution.void DDSchwarzAddWindow2(s,w)DDSchwarz *s;XBWindow w; Adds window for displaying error.DDDomainSolver *DDSchwarzGetDomainSolver1(s)DDSchwarz *s; Returns the domain solver for the �rstsubdomain.DDDomainSolver *DDSchwarzGetDomainSolver2(s)DDSchwarz *s; Returns the domain solver for the secondsubdomain.32

void DDGridUseChacoPartitioner(grid)DDGrid *grid; Sets the grid to use the Chaco package for gridpartitioning. Works only for the unstructuredgrids.int DDGridChacoHelp(argc,args)int *argc;char **args; Prints help message for Chaco package to stderr.void DDGridUseChacoPartitionerWithCommand-Line(grid,argc,args)DDGrid *grid;int *argc;char **args; Parses command line to set various argumentsfor Chaco partitioner. By default this uses amultilevel spectral partitioner.void DDGridUsePamPartitioner(grid)DDGrid *grid; Sets the grid to use the Pam package for gridpartitioning. Works only for the unstructuredgrids.int DDGridPamHelp(argc,args)int *argc;char **args; Prints help message for Pam package to stderr.void DDGridUsePamPartitionerWithCommandLine(grid,argc,args)DDGrid *grid;int *argc;char **args; Parses command line to set various argumentsfor Pam Partitioner. By default this uses amultilevel spectral partitioner.void DDGridUseNaivePartitioner(grid)DDGrid *grid; Force grid to be partitioned using simple naivescheme.void DDGridUseNaivePartitionerWithCommandLine(grid,argc,args)DDGrid *grid;int *argc;char **args; Force grid to be partitioned using simple naivescheme.void DDGridUseBaSiPartitioner(grid)DDGrid *grid; Sets the grid to use the BaSi package for gridpartitioning. Works only for the unstructuredgrids.int DDGridBaSiHelp(argc,args)int *argc;char **args; Prints help message for BaSi package to stderr.void DDGridUseBaSiPartitionerWithCommandLine(grid,argc,args)DDGrid *grid;int *argc;char **args; Parses command line to set various argumentsfor BaSi partitioner. By default this uses amultilevel spectral partitioner.void DDGridStore(grid,name)DDGrid *grid;char *name; Stores a grid to �le.DDGrid *DDGridLoad(name)char *name; Loads a grid from �le.void MGMCycle(mglevels)MG **mglevels; Given an MG structure created withMGCreate(), runs one multiplicative cycle downthrough the levels and back up.MG **MGCreate(levels)int levels; Creates a MG structure for use with themultigrid code.void MGDestroy(mg)MG **mg; Frees space used by an MG structure createdwith MGCreate().int MGCheck(mg)MG **mg; Checks that all components of MG structurehave been set. Use before MGCycle().void MGSetNumberSmoothDown(mg,n)int n;MG **mg; Sets the number of presmoothing steps to use onall levels. Use MGSetSmootherDown() to set itdi�erently on di�erent levels.void MGSetNumberSmoothUp(mg,n)int n;MG **mg; Sets the number of post smoothing steps to useon all levels. Use MGSetSmootherUp() to set itdi�erently on di�erent levels.void MGSetCycles(mg,n)int n;MG **mg; Sets the number of cycles to use. 1 is V cycle; 2is W cycle. Use MGSetCyclesOnLevel() for morecomplicated cycling.void MGACycle(mg)MG **mg; Given an MG structure created with MGCreate()runs one cycle down through the levels and backup. Applies the smoothers in an additivemanner.void MGFMG(mg)MG **mg; Given an MG structure created withMGCreate(), runs full multigrid.void MGCycle(mg,am)MG **mg;int am; Runs either an additive or multiplicative cycle ofmultigrid.void MGSetCoarseSolve(mg,f,c)MG **mg;void (*f)();void *c; Sets the solver function to be used on thecoarsest level.33

void MGSetResidual(mg,l,f,c)MG **mg;void (*f)();void *c;int l; Sets the function to be used to calculate theresidual on the lth level.void MGSetInterpolate(mg,l,f,c)MG **mg;void (*f)();void *c;int l; Sets the function to be used to calculate theinterpolation on the lth level.void MGSetZeroVector(mg,l,f,c)MG **mg;void (*f)();void *c;int l; Sets the function to be used to zero a vector onthe lth level.void MGSetRestriction(mg,l,f,c)MG **mg;void (*f)();void *c;int l; Sets the function to be used to restrict vectorfrom lth level to the l-1 level.void MGSetSmootherUp(mg,l,f,c,d)MG **mg;void (*f)();void *c;int l,d; Sets the function to be used as smoother aftercoarse grid correction (postsmoother).void MGSetSmootherDown(mg,l,f,c,d)MG **mg;void (*f)();void *c;int l,d; Sets the function to be used as smoother beforecoarse grid correction (presmoother).void MGSetCyclesOnLevel(mg,l,n)MG **mg;int l,n; Sets the number of cycles to run on this level.void MGSetRhs(mg,l,c)MG **mg;void *c;int l; Sets the vector space to be used to storeright-hand side on a particular level. User shouldfree this space at conclusion of multigrid use.void MGSetX(mg,l,c)MG **mg;void *c;int l; Sets the vector space to be used to store solutionon a particular level.User should free this spaceat conclusion of multigrid use.void MGSetR(mg,l,c)MG **mg;void *c;int l; Sets the vector space to be used to store residualon a particular level. The user should free thisspace at conclusion of multigrid use.

34

Bibliography[1] William D. Gropp and Barry F. Smith. Simpli�ed Linear Equation Solvers users manual.Technical Report ANL-93/8, Argonne National Laboratory, March 1993.[2] William D. Gropp and Barry F. Smith. Users manual for KSP: Data-structure-neutral codesimplementing Krylov space methods. Technical Report ANL-93/30, Argonne National Labora-tory, August 1993.[3] William D. Gropp and Barry F. Smith. Scalable, extensible, and portable numerical libraries.In Proceedings of Scalable Parallel Libraries Conference, pages 87{93. IEEE, 1994.

35

Function IndexDDDBCCreateDirichlet . 18DDBCCreateNeumann . 18DDBCDiscretizationCreateSimple . 19DDDomainAddBoundary . 20DDDomainCreate . 20DDDomainSolverAddSolution . 21DDDomainSolverAddWindow1 . 21DDDomainSolverAddWindow2 . 21DDDomainSolverCreateWithCommandLine . 20DDDomainSolverSetUpWithCommandLine . 20DDDomainSolverSolve . 20DDDomainSovlerAddLineGraph . 21DDFunctionCreate . 15DDFunctionEvaluatePoints . 16DDGrid2dCreateTensor . 6DDGrid2dCreateUniform . 5, 6DDGrid3dCreateTensor . 6DDGrid3dCreateUniform . 6DDGridAddBoundaryMap . 11DDGridAddMap . 7DDGridCreateHexahedrals . 10DDGridCreateQuadrilaterals . 9DDGridCreateTetrahedrals . 9DDGridCreateTriangles . 8DDGridDestroy . 5DDGridDraw . 5, 13DDGridDrawBoundary . 13DDGridGetPointsIn . 15DDGridGetPointsOnBoundary . 15DDGridInputTriangularGrid . 9DDGridLoad . 12DDGridPartition . 13DDGridRe�ne . 11DDGridSetHold . 13DDGridStore . 12DDGridToHexahedrals . 10DDGridToQuadrilaterals . 9DDGridToTetrahedrals . 9DDGridToTriangles . 8DDGridUnRe�ne . 12DDGridUseNaivePartitioner . 1436

DDGridZoom . 13DDMap2dCreate . 7, 11DDMultiGridCreateWithCommandLine . 22DDMultiGridSetUpWithCommandLine . 22DDMultiGridSolve . 22DDOneGridCreateWithCommandLine . 22DDOneGridSetUpWithCommandLine . 22DDOneGridSolve . 22DDPDECreateConvectionDi�usion2 . 17DDPDECreateConvectionDi�usion3 . 18DDPDECreateIsoLinearElasticity2 . 18DDPDECreateIsoLinearElasticity3 . 18DDPDEDiscretizationCreate . 19DDPDEDiscretizationSetIntegrationScheme . 19DDPDEDiscretizationSetUp . 19DDPoints2dCreate . 14DDPoints3dCreate . 14DDPointsCopy . 15DDPointsDi�erence . 15DDPointsDraw . 15DDPointsUnion . 15DDPointsWithNonZeroFunction . 15DDTriangulateBaker . 8XXBQuickWindow . 12XBWinCreate . 12

37

